Inference in Hybrid Bayesian Networks with Nonlinear Deterministic Conditionals
نویسندگان
چکیده
To enable inference in hybrid Bayesian networks containing nonlinear deterministic conditional distributions using mixtures of polynomials or mixtures of truncated exponentials, Cobb and Shenoy in 2005 propose approximating nonlinear deterministic functions by piecewise linear ones. In this paper, we describe a method for finding piecewise linear approximations of nonlinear functions based on two basic principles and an AIC-like heuristic. We illustrate our method for some commonly used onedimensional and two-dimensional nonlinear deterministic functions such as W = X2, W = eX , W = X · Y , and W = X/Y . Finally, we solve two small examples of hybrid Bayesian networks containing nonlinear deterministic conditionals that arise in practice.
منابع مشابه
Piecewise Linear Approximations of Nonlinear Deterministic Conditionals in Continuous Bayesian Networks
To enable inference in continuous Bayesian networks containing nonlinear deterministic conditional distributions, Cobb and Shenoy (2005) have proposed approximating nonlinear deterministic functions by piecewise linear ones. In this paper, we describe two principles and a heuristic for finding piecewise linear approximations of nonlinear functions. We illustrate our approach for some commonly u...
متن کاملPractical Aspects of Solving Hybrid Bayesian Networks Containing Deterministic Conditionals
In this paper we discuss some practical issues that arise in solving hybrid Bayesian networks that include deterministic conditionals for continuous variables. We show how exact inference can become intractable even for small networks, due to the difficulty in handling deterministic conditionals (for continuous variables). We propose some strategies for carrying out the inference task using mix...
متن کاملExtended Shenoy-Shafer architecture for inference in hybrid bayesian networks with deterministic conditionals
................................................................................................................................................................................ 1
متن کاملMixtures of Polynomials in Hybrid Bayesian Networks with Deterministic Variables
The main goal of this paper is to describe inference in hybrid Bayesian networks (BNs) using mixtures of polynomials (MOP) approximations of probability density functions (PDFs). Hybrid BNs contain a mix of discrete, continuous, and conditionally deterministic random variables. The conditionals for continuous variables are typically described by conditional PDFs. A major hurdle in making infere...
متن کاملInference in hybrid Bayesian networks using mixtures of polynomials
The main goal of this paper is to describe inference in hybrid Bayesian networks (BNs) using mixture of polynomials (MOP) approximations of probability density functions (PDFs). Hybrid BNs contain a mix of discrete, continuous, and conditionally deterministic random variables. The conditionals for continuous variables are typically described by conditional PDFs. A major hurdle in making inferen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Intell. Syst.
دوره 32 شماره
صفحات -
تاریخ انتشار 2017